QUESTION BANK 2019

DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

Page 1

<u>UNIT –II</u> (Equations reducible to Linear Differential Equations)

1)	a) Solve $(D^2 + a^2)y = \tan ax$ by method of variation of parameters.	[L3][CO2][6 M]
	b) Solve $(D^2 - 2D)y = e^x \sin x$ by method of variation of parameters.	[L3][CO2][6 M]
2)	a) Solve $(D^2 + 4)y = Sec2x$ by method of variation of parameters.	[L3][CO2][6 M]
	b) Solve $(D^2 + 1)y = Co \sec x$ by method of variation of parameters.	[L3][CO2][6 M]
3)	a) Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$	[L1][CO2][6 M]
	b) Solve $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$.	[L2][CO2][6 M]
4)	a) Solve $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12 \log x}{x^2}$	[L1][CO2][6 M]
	b) Solve $(x^2D^2 - 4xD + 6)y = x^2$	[L2][CO2][6 M]
5)	Solve $(1+x)^2 \frac{d^2 y}{dx^2} + (1+x) \frac{dy}{dx} + y = sin2[log(1+x)]$	[L3][CO2][12M]
6)	Solve $(1+x)^2 \frac{d^2 y}{dx^2} - 3(1+x)\frac{dy}{dx} + 4y = x^2 + x + 1$	[L3][CO2][12M]
7)	a) Solve $\frac{dx}{dt} = 3x + 2y$; $\frac{dy}{dt} + 5x + 3y = 0$.	[L3][CO2][6 M]
	b) Solve $\frac{dy}{dx} + y = z + e^x$; $\frac{dz}{dx} + z = y + e^x$.	[L3][CO2][6 M]
8)	Solve $\frac{dx}{dt} + 2x + y = 0$; $\frac{dy}{dt} + x + 2y = 0$; gien $x = 1$ and $y = 0$ when $t = 0$	[L2][CO2][12M]
9)	An uncharged condenser of capacity is charged applying an e.m.f $E \sin \frac{t}{\sqrt{LC}}$ through	ıgh
	leads of self-inductance L and negligible resistance. Prove that at time 't', the cha	arge
	on one of the plates is $\frac{EC}{2} \left[\sin \frac{t}{\sqrt{LC}} - \frac{t}{\sqrt{LC}} \cos \frac{t}{\sqrt{LC}} \right]$.	[L4][CO2][12M]
10)	Find the current ' i ' in the LCR circuit assuming zero initial current and charge i .	
	If R=80 ohms, L=20 henrys, C=0.01 farads and E=100 V.	[L3][CO2][12M]

DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

<u>UNIT –III</u> (Partial Differential Equations)

1)	a) Form the Partial Differential Equation by eliminating the constants from	
	$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}.$	[L1][CO3][6 M]
	b) Form the Partial Differential Equation by eliminating the constants from $(x - a)^2 + (y - b)^2 = z^2 cot^2 a$. where 'a' is a parameter.	[L2][CO3][6 M]
3)	a) Form the Partial Differential Equation by eliminating the constants from $z = a \cdot \log \left[\frac{b(y-1)}{(1-x)} \right].$	[L2][CO3][6 M]
	b) Form the Partial Differential Equation by eliminating the constants from $las(a - 1) = w + w + h$	
4)	$\log(uz - 1) = x + uy + b$.	
4)	z = $f(x^2 - y^2)$.	[L2][CO3] [6 M]
	b) Form the Partial Differential Equation by eliminating the arbitrary functions f	rom
	$z = f(x) + e^{y} \cdot g(x)$	[L2][CO3] [6 M]
5)	a) Form the Partial Differential Equation by eliminating the arbitrary functions from	om
	$xyz = f(x^2 + y^2 + z^2)$	[L3][CO3][6 M]
	b) Form the Partial Differential Equation by eliminating the arbitrary functions from $r = r + f(r^2 + r^2)$	
	$z = xy + f(x^2 + y^2)$	[L2][CO3][6 M]
5)	a) Form the P.D.E by eliminating the arbitrary function from $\mathcal{O}\left(\frac{z}{x}, x^2 + y^2 + z^2\right)$) = 0.
	b) Form the P.D.E by eliminating the arbitrary function from $f(x^2 + y^2, z - xy)$	[L3][CO3][6 M] = 0.
		[L3][CO3][6 M]
6)	a) Solve $\frac{\partial^3 z}{\partial x^2 \partial y} + 18xy^2 + \sin(2x - y) = 0$ by direct integration.	[L1][CO3][6 M]
	b) Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$. given that when $x = 0, z = e^y$ and $\frac{\partial z}{\partial x} = 1$.	[L1][CO3][6 M]
7)	a) Solve $\frac{y^2 z}{x} p + xzq = y^2$.	[L1][CO3][6 M]
	b) Solve $(z - y)p + (x - z)q = y - x$.	[L2][CO3][6 M]
8)	a) Solve $p(1+q) = qz$.	[L2][CO3][6 M]
	b) Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$.	[L2][CO3] [6 M]
9)	a) Solve by the method of separation of variables $u_x = 2u_y + u$, where $u(x, 0) =$	$= 6e^{-3x}$
	b) Solve by the method of separation of variables $4u_x + u_y = 3u$, given $u(0,y)$	[L3][CO3][6 M] = e^{-5y}
		[L3][CO3][6 M]
10)	a) Solve by the method of separation of variables $3u_x + 2u_y = 0$, where $u(x, 0)$	$= 4e^{-x}$
	b) Solve by the method of separation of variables $u_x - 4u_y = 0$, where $u(0, y) = 0$	[L3][CO3][6 M] = 8e ^{-3y}
		[L3][CO3][6 M]
DIFFE	RENTIAL EQUATIONS AND VECTOR CALCULUS	Page

<u>UNIT –IV</u> (Vector Differentiation)

1)	a) Find grad f if $f = xz^4 - x^2y$ at a point $(1, -2, 1)$. Also find $ \nabla f $	[L2][CO4][6 M]
	b) If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ then prove that $\nabla r = \frac{\vec{r}}{r}$	[L1][CO4][6 M]
2)	a) Find the directional derivative of $2xy + z^2$ at $(1, -1, 3)$ in the direction of $\vec{i} + \vec{j}$	$2\vec{j}+3\vec{k}$
		[L3][CO4][6 M]
	b) Find the directional derivative of $xyz^2 + xz$ at (1,1,1) in the direction of norm	nal to
	the surface $3xy^2 + y = z$ at (0,1,1).	[L3][CO4][6 M]
3)	a) Evaluate the angle between the normals to the surface $xy = z^2$ at the	
	points (4,1,2) and (3,3,-3).	[L3][CO4][6 M]
	b) Find the maximum or greatest value of the directional derivative of $f = x^2 y^2$	z ³ at
	the point $(2,1,-1)$.	[L3][CO4][6 M]
4)	a) Find the divergence of $\overline{f} = (xyz)\vec{i} + (3x^2y)\vec{j} + (xz^2 - y^2z)\vec{k}$.	[L1][CO4][6 M]
	b) Show that $\overline{f} = (x+3y)\vec{i} + (y-2z)\vec{j} + (x-2z)\vec{k}$ is solenoidal.	[L2][CO4][6 M]
5)	a) Find $div\overline{f}$ if $\overline{f} = grad(x^3 + y^3 + z^3 - 3xyz)$.	[L2][CO4][6 M]
	b) Find the <i>curl</i> of the vector $\overline{f} = (x + y + 1)\vec{i} + \vec{j} - (x + y)\vec{k}$.	[L1][CO4][6 M]
6)	a) Prove that $\overline{f} = (y+z)\vec{i} + (z+x)\vec{j} + (x+y)\vec{k}$ is <i>irrotational</i> .	[L2][CO4][6 M]
	b) Find curl \overline{f} if $\overline{f} = grad(x^3 + y^3 + z^3 - 3xyz)$.	[L1][CO4][6 M]
7)	a) Find 'a' if $\overline{f} = y(ax^2 + z)\vec{i} + x(y^2 - z^2)\vec{j} + 2xy(z - xy)\vec{k}$ is solenoidal.	[L2][CO4][6 M]
	b) If $\overline{f} = (x+2y+az)\vec{i} + (bx-3y-z)\vec{j} + (4x+cy+2z)\vec{k}$ is irrotational t	hen
	find the constants <i>a</i> , <i>b</i> and <i>c</i> .	[L3][CO4][6 M]
8)	a) Find $\nabla \times (\nabla \times \overline{f})$, if $\overline{f} = (x^2 y)\overline{i} - (2xz)\overline{j} + (2yz)\overline{k}$.	[L3][CO4][6 M]
	b) Prove that $div(curl\bar{f}) = 0$.	[L2][CO4][6 M]
9)	a) Prove that $\nabla(r^n) = n r^{n-2} \bar{r}$	[L2][CO4][6 M]
	b) Prove that $curl(\emptyset \bar{f}) = (grad\emptyset) \times \bar{f} + \emptyset(curl\bar{f})$	[L3][CO4][6 M]
10)	a) Prove that $\nabla . (\bar{f} \times \bar{g}) = \bar{g} . (\nabla \times \bar{f}) - \bar{f} . (\nabla \times \bar{g})$	[L3][CO4][6 M]
	b) Prove that $\nabla \times (\bar{f} \times \bar{g}) = \bar{f}(\nabla, \bar{g}) - \bar{g}(\nabla, \bar{f}) + (\bar{g}, \nabla)\bar{f} - (\bar{f}, \nabla)\bar{g}$	[L3][CO4][6 M]

DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

<u>UNIT –V</u>

(Vector Integration & Integral theorems)

1)	a) If $\overline{F} = (5xy - 6x^2)\vec{i} + (2y - 4x)\vec{j}$. Evaluate $\int_c \overline{F} \cdot d\overline{r}$ along the curve 'c' in xy-plane $y = x^3$ from (1,1)to(2,8).	[L2][CO5][6 M]
	b) Find the work done by a force $\vec{F} = (2y+3)\vec{i} + (xz)\vec{j} + (yz-x)k$ when it m	oves
	a particle from $(0,0,0)to(2,1,1)$ along the curve $x = 2t^2$; $y = t$; $z = t^3$.	[L3][CO5][6 M]
2)	If $F = (x^2 + y^2)i - (2xy)j$. Evaluate $\int_c F d\bar{r}$ where 'c' is the rectangle	
	in xy-plane bounded by $y = 0$; $y = b$ and $x = 0$; $x = a$.	[L3][CO5][12M]
3)	a) Evaluate $\int_{s} \bar{F} \cdot \bar{n} ds$. where $\bar{F} = 18z\bar{i} - 12\bar{j} + 3yk$ and 's' is the part of the su	rface
	of the plane $2x + 3y + 6z = 12$ located in the first octant.	[L3][CO5][6 M]
	b) Evaluate $\int_{s} \vec{F} \cdot \vec{n} ds$. where $\vec{F} = 12x^{2}y\vec{i} - 3yz\vec{j} + 2z\vec{k}$ and 's' is the portion of	f the
	plane $x + y + z = 1$ located in the first octant.	[L2][CO5][6 M]
4)	a) If $\overline{F} = 2xz\overline{i} - x\overline{j} + y^2\overline{k}$. Evaluate $\int_{v} \overline{F} \cdot dv$ where 'v' is the region bounded by	y the
	surfaces $x = 0$; $x = 2$: $y = 0$; $y = 6$ and $z = x^2$; $z = 4$.	[L3][CO5][6 M]
	b) If $\overline{F} = (2x^2 - 3z)\vec{i} - 2xy\vec{j} - 4x\vec{k}$ then Evaluate $\int_{v} \nabla \cdot \overline{F} dv$ where 'v' is the	
	closed region bounded by $x = 0$; $y = 0$; $z = 0$ and $2x + 2y + z = 4$.	[L2][CO5][6 M]
5)	a) State Gauss's divergence theorem.	[L1][CO5][2 M]
	b) By transforming into triple integral, Evaluate $\iint_{s} x^{3}dydz + x^{2}ydzdx + x^{2}zdx$	lxdy
	where 's' is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$ and the	ie
	circular discs $z = 0$; $z = b$.	[L3][CO5][10 M]
6)	Verify Gauss's divergence theorem for $\vec{F} = (x^3 - yz)\vec{i} - 2x^2y\vec{j} + z\vec{k}$ taken over	the
- /	surface of the cube bounded by the planes $x = y = z = a$ and coordinate plane	s. [L3][CO5][12M]
7)	a) Apply Green's theorem to Evaluate $\oint_{a} (2x^2 - y^2) dx + (x^2 + y^2) dy$ where 'c	is is
	the enclosed by the x-axis and upper half of the circle $x^2 + y^2 = a^2$.	[L2][CO5][6 M]
	b) Evaluate by Green's theorem $\oint_c (y - sinx) dx + cosxdy$ where 'c' is the trian	ıgle
	enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$.	[L3][CO5][6 M]
8)	a) State Green's theorem in a plane.	[L1][CO5][2 M]
	b) Verify Green's theorem in a plane for $\oint_c (x^2 - xy^3) dx + (y^2 - 2xy) dy$ when	re 'c' is
	a square with vertices $(0,0)(2,0)(2,2)$ and $(0,2)$.	[L3][CO5][10M]
9)	Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\vec{\imath} - 2xy\vec{j}$ taken round the rectangle by	ounded
	by the lines $x = \pm a$, $y = \pm b$.	[L3][CO5][12M]
10)	a) State Stoke's theorem. b) Verify Stoke's theorem for $\overline{F} = x^{2\vec{i}} \pm xy^{\vec{i}}$ integrated round the square in the	[L1][CO5][2 M]
	plane $z = 0$, whose sides are along the line $x = 0$, $y = 0$; $x = a$, $y = a$.	[L3][CO5][10M]